If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-80x+84=0
a = 15; b = -80; c = +84;
Δ = b2-4ac
Δ = -802-4·15·84
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{85}}{2*15}=\frac{80-4\sqrt{85}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{85}}{2*15}=\frac{80+4\sqrt{85}}{30} $
| x/2+x/5-x/10=3 | | 10x-3x-7=5x-5+2x | | 0=2x^2+36x+170 | | 15u-8u=15 | | 187/x=58 | | 7/8x+2=-3/4-24 | | 8(x+6)=-4x-36 | | b=-17-8b-73 | | a^-14a-24=-9 | | (x+1)(x+5)=(x+3)(x-4)+3 | | 74.6+c=72 | | 5m+7÷2=3÷2m-14 | | 72x+6x=7x-80 | | 4x+1=12+4x | | 19/7=p-7 | | 4(x+8)+2(x-22)=180 | | 1/3x+6=-7 | | (x+1)(x+5)=(x+3)(x-4) | | -9=-3/5x+6 | | 7x-4x=19 | | 7+n=27n+1 | | 3x+47+8x+7=180 | | 3x+7=8x+7 | | 2x+0,5x=7500 | | 10p+9-11-p=-2(22p+4)-3(2p-2) | | 4x-1.5=-3.5 | | m÷5=13 | | 12x^2-168x+392=0 | | 6+25x=21 | | C=7/6(k-1) | | 0.75x-16.50=0.45x | | x=-4.4x2-2x×15 |